14.3.1.2. Dambreak with Elastic Obstacle Analysis using moving mesh

  1. The source code is shown below, which can be downloaded here.
  2. Run the source code in your favorite Python program.
  3. The ParaView is needed to view the results. To view the displaced shape of fluid, use the “Warp By Vector” filter with scale factor = 1.0.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import openseespy.opensees as ops

# ------------------------------
# Start of model generation
# -----------------------------

# remove existing model
ops.wipe()

# set modelbuilder
ops.model('basic', '-ndm', 2, '-ndf', 3)

# geometric
L = 0.146
H = 2*L
H2 = 0.3
b = 0.012
h = 0.005
alpha = 1.4
Hb = 20.0*b/3.0
tw =  3*h

# material
rho = 1000.0
mu = 0.0001
b1 = 0.0
b2 = -9.81
thk = 0.012
kappa = -1.0

rhos = 2500.0
A = thk*thk
E = 1e6
Iz = thk*thk*thk*thk/12.0
bmass = A*Hb*rhos

# analysis
dtmax = 1e-3
dtmin = 1e-6
totaltime = 1.0

filename = 'obstacle'

# recorder
if not os.path.exists(filename):
    os.makedirs(filename)
ops.recorder('PVD', filename, 'disp', 'vel', 'pressure')

# nodes
ops.node(1, 0.0, 0.0)
ops.node(2, L, 0.0)
ops.node(3, L, H, '-ndf', 2)
ops.node(4, 0.0, H)
ops.node(5, 0.0, H2)
ops.node(6, 4*L, 0.0)
ops.node(7, 4*L, H2)
ops.node(8, -tw, H2)
ops.node(9, -tw, -tw)
ops.node(10, 4*L+tw, -tw)
ops.node(11, 4*L+tw, H2)
ops.node(12, 2*L, 0.0)
ops.node(13, 2*L, Hb)

# ids for meshing
wall_id = 1
beam_id = 2
water_bound_id = -1
water_body_id = -2

# transformation
transfTag = 1
ops.geomTransf('Corotational', transfTag)

# section
secTag = 1
ops.section('Elastic', secTag, E, A, Iz)

# beam integration
inteTag = 1
numpts = 2
ops.beamIntegration('Legendre', inteTag, secTag, numpts)

# beam mesh
beamTag = 6
ndf = 3
ops.mesh('line', beamTag, 2, 12, 13, beam_id, ndf, h, 'dispBeamColumn', transfTag, inteTag)

ndmass = bmass/len(ops.getNodeTags('-mesh', beamTag))

for nd in ops.getNodeTags('-mesh', beamTag):
    ops.mass(nd, ndmass, ndmass, 0.0)

# fluid mesh 
fluidTag = 4
ndf = 2
ops.mesh('line', 1, 10, 4,5,8,9,10,11,7,6,12,2, wall_id, ndf, h)
ops.mesh('line', 2, 3, 2,1,4, wall_id, ndf, h)
ops.mesh('line', 3, 3, 2,3,4, water_bound_id, ndf, h)

eleArgs = ['PFEMElementBubble',rho,mu,b1,b2,thk,kappa]
ops.mesh('tri', fluidTag, 2, 2,3, water_body_id, ndf, h, *eleArgs)

# wall mesh
wallTag = 5
ops.mesh('tri', wallTag, 2, 1,2, wall_id, ndf, h)

for nd in ops.getNodeTags('-mesh', wallTag):
    ops.fix(nd, 1,1,1)

# save the original modal
ops.record()

# create constraint object
ops.constraints('Plain')

# create numberer object
ops.numberer('Plain')

# create convergence test object
ops.test('PFEM', 1e-5, 1e-5, 1e-5, 1e-5, 1e-15, 1e-15, 20, 3, 1, 2)

# create algorithm object
ops.algorithm('Newton')

# create integrator object
ops.integrator('PFEM')

# create SOE object
ops.system('PFEM')

# create analysis object
ops.analysis('PFEM', dtmax, dtmin, b2)

# analysis
while ops.getTime() < totaltime:

    # analysis
    if ops.analyze() < 0:
        break

    ops.remesh(alpha)